Approximating I/O Data Using Radial Basis Functions: A New Clustering-Based Approach

نویسندگان

  • Mohammed Awad
  • Héctor Pomares
  • Luis Javier Herrera
  • Jesús González
  • Alberto Guillén
  • Fernando Rojas Ruiz
چکیده

In this paper, we deal with the problem of function approximation from a given set of input/output data. This problem consists of analyzing these training examples so that we can predict the output of the model given new inputs. We present a new method for function approximation of the I/O data using radial basis functions (RBFs). This approach is based on a new efficient method of clustering of the centres of the RBF Network (RBFN); it uses the objective output of the RBFN to move the clusters instead of just the input values of the I/O data. This method of clustering, especially designed for function approximation problems, improves the performance of the approximator system obtained, compared with other models derived from traditional algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

A meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions

In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...

متن کامل

Prediction of Time Series Using RBF Neural Networks: A New Approach of Clustering

In this paper, we deal with the problem of time series prediction from a given set of input/output data. This problem consists of the prediction of future values based on past and/or present data. We present a new method for prediction of time series data using radial basis functions. This approach is based on a new efficient method of clustering of the centers of the radial basis function neur...

متن کامل

Numerical Solution of Fractional Black Scholes Equation Based on Radial Basis Functions Method

Options pricing have an important role in risk control and risk management. Pricing discussion requires modelling process, solving methods and implementing the model by real data in a given market. In this paper we show a model for underlying asset based on fractional stochastic models which is a particular type of behavior of stochastic assets changing. In addition a numerical method based on ...

متن کامل

MQ-Radial Basis Functions Center Nodes Selection with PROMETHEE Technique

In this paper‎, ‎we decide to select the best center nodes‎ ‎of radial basis functions by applying the Multiple Criteria Decision‎ ‎Making (MCDM) techniques‎. ‎Two methods based on radial basis‎ ‎functions to approximate the solution of partial differential‎ ‎equation by using collocation method are applied‎. ‎The first is based‎ ‎on the Kansa's approach‎, ‎and the second is based on the Hermit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005